The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
نویسندگان
چکیده
Despite the importance of the oxidative pentose phosphate (PP) pathway as a major source of reducing power and metabolic intermediates for biosynthetic processes, almost no direct genetic or biochemical evidence is available for Bacillus subtilis. Using a combination of knockout mutations in known and putative genes of the oxidative PP pathway and 13C-labeling experiments, we demonstrated that yqjI encodes the NADP+-dependent 6-P-gluconate dehydrogenase, as was hypothesized previously from sequence similarities. Moreover, YqjI was the predominant isoenzyme during glucose and gluconate catabolism, and its role in the oxidative PP pathway could not be played by either of two homologues, GntZ and YqeC. This conclusion is in contrast to the generally held view that GntZ is the relevant isoform; hence, we propose a new designation for yqjI, gndA, the monocistronic gene encoding the principal 6-P-gluconate dehydrogenase. Although we demonstrated the NAD+-dependent 6-P-gluconate dehydrogenase activity of GntZ, gntZ mutants exhibited no detectable phenotype on glucose, and GntZ did not contribute to PP pathway fluxes during growth on glucose. Since gntZ mutants grew normally on gluconate, the functional role of GntZ remains obscure, as does the role of the third homologue, YqeC. Knockout of the glucose-6-P dehydrogenase-encoding zwf gene was primarily compensated for by increased glycolytic fluxes, but about 5% of the catabolic flux was rerouted through the gluconate bypass with glucose dehydrogenase as the key enzyme.
منابع مشابه
Molecular Identification of the Most Prevalent Mutation of Glucose-6-Phosphate Dehydrogenase Gene in Deficient Patients in Sistan and Balochestan Province of Iran
Glucose-6-phosphate dehydrogenase (G6PD) in humans is an X-chromosome-linked disorder and housekeeping enzyme, vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho gluconate in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cell...
متن کاملMOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE
Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...
متن کاملNADPH‐dependent 5‐keto‐D‐gluconate reductase is a part of the fungal pathway for D‐glucuronate catabolism
NADPH-dependent 5-keto-D-gluconate reductase was identified as a missing element in the pathway for D-glucuronate catabolism in fungi. The disruption of the gene, gluF, by CRISPR/Cas9 in the filamentous fungus Aspergillus niger resulted in a strain unable to catabolise D-glucuronate. The purified GluF protein was characterized and kcat and Km values of 23.7 ± 1.8 s-1 and 3.2 ± 0.1 mm for 5-keto...
متن کاملDifferent biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism.
To sustain growth, the catabolic formation of the redox equivalent NADPH must be balanced with the anabolic demand. The mechanisms that ensure such network-wide balancing, however, are presently not understood. Based on 13C-detected intracellular fluxes, metabolite concentrations, and cofactor specificities for all relevant central metabolic enzymes, we have quantified catabolic NADPH productio...
متن کاملNovel Pathway for Alcoholic Fermentation of -Gluconolactone in the Yeast Saccharomyces bulderi
Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent glucose dehydrogenase (EC 1.1.1.47). After phosphorylation, half of the glucose is metabolized via t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 186 14 شماره
صفحات -
تاریخ انتشار 2004